Math 241

Problem Set 1 solution manual

Exercise. A1.1

- a- Let us show that f: $\mathbb{R} \longrightarrow \mathbb{R}$ given by f(x) = ax + b, for $a \in \mathbb{R}^*$ and $b \in \mathbb{R}$ is a bijection.
 - i injective: Let $f(x_1) = f(x_2)$ required to show $x_1 = x_2$ so we have $ax_1 + b = ax_2 + b$ (by adding -b to both side of the equality) then $ax_1 = ax_2$ then $x_1 = x_2$ by cancellation since \mathbb{R} is a group under multiplication then f is injective.
 - surjective: Let $y \in \mathbb{R}$, required to find $x \in \mathbb{R}$ such that f(x) = y. Let $x = \frac{y-b}{a}$, then it is easy to see that f(x) = y. Hence f is surjective.
 - ii Now let us find f^{-1} :

we have
$$y = ax + b$$

 $y - b = ax$
 $x = \frac{y - b}{a}$

Now let $g(x) = \frac{x-b}{a}$, and let us verify that $g = f^{-1}$ it is easy to prove : $fog = id_{\mathbb{R}}$, and $gof = id_{\mathbb{R}} \implies g = f^{-1}$

b- First we need to prove that o is a binary operation over G , i.e we need to show that the composite of two functions in G is a function in G.

Let $f_1 = f_{a,b}$, and $f_2 = f_{c,d} \in G$. then $f_1 o f_2 = f_1(f_2(x)) = f_1(cx + d) = a(cx + d) + b = acx + ad + b = f_{ac,ad+b}$ which is a function in G. now let us prove G is a group.

- (a) G has an identity element: consider $f_{1,0}(x) = x$ $f_{1,0}of_{a,b} = f_{1,0}(ax+b) = ax+b = f_{a,b}(x)$. similarly $f_{a,b}of_{1,0} = f_{a,b}$.
- (b) the operation o is associative: $f_{a,bo}(f_{c,d}of_{e,f})(x) = f_{a,b}(f_{c,d}of_{e,f}(x)) = f_{a,b}(f_{c,d}(f_{e,f}(x))) = f_{a,b}(f_{c,d}(ex+f))$ $= f_{a,b}(cex + cf + d) = acex + acf + ad + b.$ doing the same for $(f_{a,b}of_{c,d})of_{e,f}(x)$ we will get the same result. \implies o is associative.
- (c) $\forall f_{a,b} \in G f_{a,b}$ have an inverse, which is the inverse found in part (a), moreover this inverse belongs to G, since $f_{a,b}$)⁻¹ = $f_{\frac{1}{a}, -\frac{b}{a}}$.

So G is a group under composition.

c- consider the subgroup H of $GL_2(\mathbb{R})$ defined by $\left\{ \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ such that $a \in \mathbb{R}^*$ and $b \in \mathbb{R} \right\}$

(a) Let us prove that H is a group of GL_2 . -for any two matrices $A = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} \in GL_2 A \cdot B = \begin{bmatrix} ac & ad+b \\ 0 & 1 \end{bmatrix}$, which is in H.

-identity belongs to H, since for a = 1, and b = 0 the matrix we get is the identity matrix.

-for every element $A = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$, we have $A^{-1} = \begin{bmatrix} \frac{1}{a} & \frac{-b}{a} \\ 0 & 1 \end{bmatrix} \in H$. So we get that H is a subgroup of GL_2 .

(b) Now let us prove that H is isomorphic to the group G given above:

Consider the map : ϕ : H \longrightarrow G defined by $\phi(f_{a,b}) = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix}$. -Let us first prove that it is a homomorphism: $\phi(f_{a,b}of_{c,d}) = \phi(f_{ac,ad+b}) = \begin{bmatrix} ac & ad+b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix} = \phi(f_{a,b}) \cdot \phi(f_{c,d})$. \implies ϕ is a group homomorphism. -injective : Let $\phi(f_{a,b}) = \phi(f_{c,d})$ $\implies \begin{bmatrix} a & b \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} c & d \\ 0 & 1 \end{bmatrix}$ $\implies a = c$, and b = d, $\implies f_{a,b} = f_{c,d}$. -surjective is obvious. $\implies \phi$ is a group isomorphism.

Section. 0

Exercise. 1 { $x \in \mathbb{R} - x^2 = 3$ } = { $-\sqrt{3}, \sqrt{3}$ }.

Exercise. 2 { $m \in \mathbb{Z} - x^2 = 3$ } = Φ .

Exercise. 3

 $\{ m \in \mathbb{Z} - m.n = 60 \text{ for some } n \in \mathbb{Z} \} = \text{The set of all divisors of } 60 \text{ in } \mathbb{Z} = \{ -1, -2, -3, -4, -5, -6, -10, -12, -15, -20, -30, -60, 60, 30, 20, 15, 12, 10, 6, 5, 4, 3, 2, 1 \}.$

Exercise. 12

a. We define $f: A \longrightarrow B :$ by f(1) = 4 f(2) = 4f(3) = 6

This map is defined over the entire set A (i.e for each $a \in A$ f(a) is defined) Also its range is a subset of B, so the map is well defined then it is a function. **injective**:Notice that f(1) = f(2), with $1 \neq 2$. then f is not injective. surjective Notice that for $b = 2 \in \mathbb{B} \nexists a \in \mathbb{A}$ such that f(a) = b. So f is not surjective.

- b. This is also a function , which is neither injective nor surjective, and the proof is similar to the above argument in (a).
- c. We define $f: A \longrightarrow B :$ by f(1) = 6f(1) = 2

$$f(1) = 4$$

 $f(1) = 4$

This is can't describe a function from A to B because it is not defined for all elements of A, moreover it doesn't satisfy $a=b \implies f(a) = f(b)$.

d. We define $f: A \longrightarrow B :$ by f(1) = 6 f(2) = 2f(3) = 4

This is a function by the same argument of part (a).

injective: it is clear that f(a) = f(b) only if a = b, from the definition of the function, so it is injective.

surjective: Also it is easy to see that for all elements of $b \in B$ we can find a corresponding element $a \in A$ such that f(a) = b.

So f is a bijection from A into B.

- e. This is also a function, which is neither injective nor surjective, and the proof is similar to the above argument in (a).
- f. This doesn't describe a function since it is not defined for all elements of A (f(3)) is not defined).

Section. 1

Exercise. 22 $10 +_1 7 \ 16 = (26 \ \text{mod} \ 17) = 9.$

Exercise. 29

 $x +_{15} 7 = 3$ in \mathbb{Z}_{15} . Notice that 7' = 8 since $7 +_{15} 8 = (15 \bmod 15) = 0$ (i.e the inverse of 7 is 8 in \mathbb{Z}_{15}). We add 8 to both sides of the equation to get : $x +_{15} 7 +_{15} 8 = 3 +_{15} 8 = 11 \mod(15)$, i.e x = 11 + k.15 for any $k \in \mathbb{Z}$, but since we need our answer in \mathbb{Z}_{15} we can only choose k to be 0. So our x = 11.

Exercise. 32

x	$x +_{17} + x +_{17} x$
0	0
1	3
2	6
3	2
4	5
5	1
6	4

In modular arithmetics this is : $x +_7 x +_7 x = 5 \mod(7)$ $\Leftrightarrow 3x = 5 \mod(7)$ $\Leftrightarrow 5.3.x = 5.5 \mod(7)$ $\Leftrightarrow x = 4 \mod(7).$

Exercise. 33 $x +_{12} x = 2 \pmod{12}$ the solution is $\{x \in \mathbb{Z} - x +_{12} x = 2 \mod(12)\} = \{1, 7\}.$

Section. 2

Exercise. 8 -Let \star be defined on \mathbb{Q} by $a \star b = ab + 1$. -commutative : $\forall a, b \in \mathbb{Q}$ $a \star b = a.b + 1$, and $b \star a = b.a + 1$, where the (.) used is the usual multiplication which is commutative, so $a \star b = b \star a$. So \star is commutative.

-associative : $\forall a, b \in \mathbb{Q}$ $(a \star b) \star c = (ab + 1) \star c = (ab + 1)c + 1 = abc + c + 1$, while $a \star (b \star c) = abc + a + 1 \neq (a \star b) \star c$. Now consider the following example: Let a = 1, b = 1, and c = 2 then we get $(a \star b) \star c = 2 + 2 + 1 = 5$, while $a \star (b \star c) = 2 + 1 + 1 = 4$. So \star is not associative.

Exercise. 9 -- $\forall a, b \in \mathbb{Q}$ $a \star b = \frac{a.b}{2} = \frac{b.a}{2} = b \star a$. So \star commutative.

 $\begin{array}{l} -\forall a, b \in \mathbb{Q} \\ a \star (b \star c) = \frac{a \cdot \frac{b \cdot c}{2}}{2} = \frac{a b c}{4} = \frac{\frac{a \cdot b}{2} \cdot c}{2} = (a \star b) \star c. \text{ So } \star \text{ is associative.} \end{array}$

Exercise. 23 -

 $\mathbf{H} = \left\{ \left[\begin{array}{cc} a & -b \\ b & a \end{array} \right] - a, b \in \mathbb{R} \right\}$ Let $A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, and $B = \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$ be two elements in H.

-Under addition : $A+B=\begin{bmatrix} a+c & -b-d \\ b+d & a+c \end{bmatrix}$, which is an element of H. So His closed under addition. -Under multiplication: A.B= $\begin{bmatrix} ac-bd & -ad-bc \\ bc+ad & ac-bd \end{bmatrix} = \begin{bmatrix} u & -v \\ v & u \end{bmatrix}$ for u = ac-bd and v = ad+bc. So H is closed under multiplication.

Exercise. 26 -

Given \star associative: prove $(a \star b) \star (c \star d) = [(d \star c) \star a] \star b$. start with : $[(d \star c) \star a] \star b$, and cosider $(d \star c) = u \in S$ (Note that $u = (c \star d)$ since \star commutative). we get $(u \star a) \star b = u \star (a \star b)$ since \star is associative. Then $u \star (a \star b) = (a \star b) \star u$ since \star is commutative. Then we get $[(d \star c) \star a] \star b = (a \star b) \star u = (a \star b) \star (c \star d).$

Section. 3

Exercise. 33 -
H = {
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} - a, b \in \mathbb{R}$$
 }

a.

Consider the function $\phi : (\mathbb{C}, +) \longrightarrow (\mathrm{H}, +)$.

 $\phi(a +$

Defined by

$$ib) = \left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]$$

- $-\phi$ is well defined :
 - for a + ib = c + id we have a = c and b = d which implies $\phi(a + ib) = \phi(c + id)$.
 - For any $z \in \mathbb{C}$, $\phi(z) \in H$.

 $-\phi$ is a homomorphism :

For
$$z_1 = a + ib$$
, and $z_2 = c + id$ we need to show $\phi(z_1 + z_2) = \phi(z_1) + \phi(z_2)$
 $\phi(z_1 + z_2) = \phi(a + ib + c + id) = \phi(a + c + i(b + d)) = \begin{bmatrix} a + c & -b - d \\ b + d & a + c \end{bmatrix}$
 $= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} + \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(z_1) + \phi(z_2).$
- ϕ is injective:
Let $\phi(z_1) = \phi(z_2)$ for $z_1 = a + ib$, and $z_2 = c + id.$
Then : $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \begin{bmatrix} c & -d \\ d & c \end{bmatrix}$
Then $a = c$, and $b = d$, which implies $z_1 = z_2$. $\implies \phi$ is injective.

 $\begin{array}{ll} -\phi \quad \text{is surjective}: \\ & \text{Let } \mathbf{A} \!=\! \begin{bmatrix} a & \!-b \\ b & \!a \end{bmatrix} \in \mathbf{H}, \text{ then consider } z = a + ib \in \mathbb{C}, \text{ it is clear that } \phi(z) \!=\! \mathbf{A}. \\ & \Longrightarrow \phi \text{ is surjective.} \end{array}$

Note that instead of proving Φ inective and surjective we can just prove that ϕ has a well defined inverse function which is :

$$\phi^{-1}\left(\left[\begin{array}{cc}a & -b\\b & a\end{array}\right]\right) = a + ib. \text{ So } (\mathbb{C},+) \cong (\mathrm{H},+)$$

b.

Consider the same function ϕ introduced above, it is still a well defined bijection from (\mathbb{C}, \cdot) to (H, \cdot) . So we only need to show that it is a homomorphism.

$$z_1 = a + ib, \text{ and } z_2 = c + id \text{ we need to show } \phi(z_1 + z_2) = \phi(z_1) + \phi(z_2).$$

$$\phi(z_1.z_2) = \phi((a + ib).(c + id)) = \phi(ac - bd + i(ad + bc)) = \begin{bmatrix} ac - bd & -(ad + bc) \\ ad + bc & ac - bd \end{bmatrix}$$

$$= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} c & -d \\ d & c \end{bmatrix} = \phi(z_1) \cdot \phi(z_2).$$

So ϕ ia an isomorphism. \implies ($\mathbb{C},.$) \cong (H,.)

Section. 4

For

Exercise. 8 -

The set $\{1, 3, 5, 7\}$ with multiplication .8 modulo 8 is a group. Its table is

•8	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1