Math 241

Problem Set 1 solution manual

Exercise. A1.1

a- Let us show that $\mathrm{f}: \mathbb{R} \longrightarrow \mathbb{R}$
given by $f(x)=a x+b$,for $a \in \mathbb{R}^{*}$ and $b \in \mathbb{R}$ is a bijection.
i - injective:
Let $f\left(x_{1}\right)=f\left(x_{2}\right)$ required to show $x_{1}=x_{2}$ so we have $a x_{1}+b=a x_{2}+b$ (by adding $-b$ to both side of the equality) then $a x_{1}=a x_{2}$
then $x_{1}=x_{2}$ by cancellation since \mathbb{R} is a group under multiplication
then f is injective.

- surjective:

Let $y \in \mathbb{R}$, required to find $x \in \mathbb{R}$ such that $f(x)=y$.
Let $x=\frac{y-b}{a}$, then it is easy to see that $f(x)=y$.
Hence f is surjective.
ii Now let us find f^{-1} :
we have $y=a x+b$

$$
\begin{aligned}
& y-b=a x \\
& x=\frac{y-b}{a}
\end{aligned}
$$

Now let $g(x)=\frac{x-b}{a}$, and let us verify that $g=f^{-1}$ it is easy to prove : $f o g=i d_{\mathbb{R}}$, and $g \circ f=i d_{\mathbb{R}} \Longrightarrow g=f^{-1}$
b- First we need to prove that o is a binary operation over G, i.e we need to show that the composite of two functions in G is a function in G .
Let $f_{1}=f_{a, b}$, and $f_{2}=f_{c, d} \in \mathrm{G}$. then $f_{1} o f_{2}=f_{1}\left(f_{2}(x)\right)=f_{1}(c x+d)=a(c x+d)+b=$ $a c x+a d+b=f_{a c, a d+b}$ which is a function in G. now let us prove G is a group.
(a) G has an identity element:
consider $f_{1,0}(x)=x$
$f_{1,0} \circ f_{a, b}=f_{1,0}(a x+b)=a x+b=f_{a, b}(x)$.
similarly $f_{a, b} o f_{1,0}=f_{a, b}$.
(b) the operation o is associative:
$f_{a, b} o\left(f_{c, d} \circ f_{e, f}\right)(x)=f_{a, b}\left(f_{c, d} \circ f_{e, f}(x)\right)=f_{a, b}\left(f_{c, d}\left(f_{e, f}(x)\right)\right)=f_{a, b}\left(f_{c, d}(e x+f)\right)$
$=f_{a, b}(c e x+c f+d)=a c e x+a c f+a d+b$.
doing the same for $\left(f_{a, b} \circ f_{c, d}\right) o f_{e, f}(x)$ we will get the same result.
$\Longrightarrow \mathrm{o}$ is associative.
(c) $\forall f_{a, b} \in \mathrm{G} f_{a, b}$ have an inverse, which is the inverse found in part (a), moreover this inverse belongs to G, since $\left.f_{a, b}\right)^{-1}=f_{\frac{1}{a}, \frac{-b}{a}}$.

So G is a group under composition.
c- consider the subgroup H of $G L_{2}(\mathbb{R})$ defined by $\left\{\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]\right.$ such that $a \in \mathbb{R}^{*}$ and $\left.b \in \mathbb{R}\right\}$
(a) Let us prove that H is a group of $G L_{2}$.
-for any two matrices $\mathrm{A}=\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{cc}c & d \\ 0 & 1\end{array}\right] \in G L_{2} \mathrm{~A} \cdot \mathrm{~B}=\left[\begin{array}{cc}a c & a d+b \\ 0 & 1\end{array}\right]$
, which is in H .
-identity belongs to H , since for $a=1$, and $b=0$ the matrix we get is the identity matrix.
-for every element $\mathrm{A}=\left[\begin{array}{cc}a & b \\ 0 & 1\end{array}\right]$, we have $A^{-1}=\left[\begin{array}{cc}\frac{1}{a} & \frac{-b}{a} \\ 0 & 1\end{array}\right] \in \mathrm{H}$.
So we get that H is a subgroup of $G L_{2}$.
(b) Now let us prove that H is isomorphic to the group G given above:

Consider the map : $\phi: \mathrm{H} \longrightarrow \mathrm{G}$ defined by $\phi\left(f_{a, b}\right)=\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]$.
-Let us first prove that it is a homomorphism:
$\phi\left(f_{a, b} \circ f_{c, d}\right)=\phi\left(f_{a c, a d+b}\right)=\left[\begin{array}{cc}a c & a d+b \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right] \cdot\left[\begin{array}{cc}c & d \\ 0 & 1\end{array}\right]=\phi\left(f_{a, b}\right) \cdot \phi\left(f_{c, d}\right) . \Longrightarrow$
ϕ is a group homomorphism.
-injective : Let $\phi\left(f_{a, b}\right)=\phi\left(f_{c, d}\right)$
$\Longrightarrow\left[\begin{array}{ll}a & b \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}c & d \\ 0 & 1\end{array}\right]$
$\Longrightarrow a=c$, and $b=d, \Longrightarrow f_{a, b}=f_{c, d}$.
-surjective is obvious.
$\Longrightarrow \phi$ is a group isomorphism.
Section. 0
Exercise. 1
$\left\{x \in \mathbb{R}-x^{2}=3\right\}=\{-\sqrt{3}, \sqrt{3}\}$.
Exercise. 2
$\left\{\mathrm{m} \in \mathbb{Z}-x^{2}=3\right\}=\Phi$.
Exercise. 3
$\{\mathrm{m} \in \mathbb{Z}-m . n=60$ for some $n \in \mathbb{Z}\}=$ The set of all divisors of 60 in \mathbb{Z} $=\{-1,-2,-3,-4,-5,-6,-10,-12,-15,-20,-30,-60,60,30,20,15,12,10,6,5,4,3,2,1\}$.

Exercise. 12
a. We define $f: \mathrm{A} \longrightarrow \mathrm{B}$: by

$$
\begin{aligned}
& f(1)=4 \\
& f(2)=4 \\
& f(3)=6
\end{aligned}
$$

This map is defined over the entire set A (i.e for each $a \in \mathrm{~A} f(a)$ is defined) Also its range is a subset of B , so the map is well defined then it is a function. injective:Notice that $f(1)=f(2)$, with $1 \neq 2$. then f is not injective.
surjective Notice that for $b=2 \in \mathrm{~B} \nexists a \in \mathrm{~A}$ such that $f(a)=b$. So f is not surjective.
b. This is also a function, which is neither injective nor surjective, and the proof is similar to the above argument in (a).
c. We define $f: \mathrm{A} \longrightarrow \mathrm{B}:$ by

$$
\begin{aligned}
& f(1)=6 \\
& f(1)=2 \\
& f(1)=4
\end{aligned}
$$

This is can't describe a function from A to B because it is not defined for all elements of A , moreover it doesn't satisfy $\mathrm{a}=\mathrm{b} \Longrightarrow f(a)=f(b)$.
d. We define $f: \mathrm{A} \longrightarrow \mathrm{B}:$ by

$$
\begin{aligned}
& f(1)=6 \\
& f(2)=2 \\
& f(3)=4
\end{aligned}
$$

This is a function by the same argument of part (a).
injective: it is clear that $f(a)=f(b)$ only if $a=b$, from the definition of the function, so it is injective.
surjective: Also it is easy to see that for all elements of $b \in \mathrm{~B}$ we can find a corresponding element $a \in \mathrm{~A}$ such that $f(a)=b$.

So f is a bijection from A into B .
e. This is also a function, which is neither injective nor surjective, and the proof is similar to the above argument in (a).
f. This doesn't describe a function since it is not defined for all elements of $\mathbf{A}(f(3)$ is not defined).

Section. 1

Exercise. 22
$10+{ }_{1} 716=(26 \bmod 17)=9$.

Exercise. 29

$\mathrm{x}+{ }_{15} 7=3$ in \mathbb{Z}_{15}.
Notice that $7^{\prime}=8$ since $7{ }_{15} 8=(15 \bmod 15)=0\left(\right.$ i.e the inverse of 7 is 8 in $\left.\mathbb{Z}_{15}\right)$.
We add 8 to both sides of the equation to get : $\mathrm{x}+{ }_{15} 7{ }_{1}{ }_{1} 58=3+{ }_{15} 8=11 \bmod (15)$,
i.e $\mathrm{x}=11+\mathrm{k} .15$ for any $\mathrm{k} \in \mathbb{Z}$, but since we need our answer in \mathbb{Z}_{15} we can only choose k to be 0 .

So our $\mathrm{x}=11$.

Exercise. 32

x	$x+{ }_{17}+x+{ }_{17} x$
0	0
1	3
2	6
3	2
4	5
5	1
6	4

In modular arithmetics this is :
$x+{ }_{7} x+{ }_{7} x=5 \bmod (7)$
$\Leftrightarrow 3 x=5 \bmod (7)$
$\Leftrightarrow 5.3 . x=5.5 \bmod (7)$
$\Leftrightarrow x=4 \bmod (7)$.

Exercise. 33
$x+{ }_{12} x=2(\bmod 12)$ the solution is $\left\{x \in \mathbb{Z}-x+{ }_{12} x=2 \bmod (12)\right\}=\{1,7\}$.
Section. 2
Exercise. 8 -
Let \star be defined on \mathbb{Q} by $a \star b=a b+1$.
-commutative : $\forall a, b \in \mathbb{Q}$
$a \star b=a . b+1$, and $b \star a=b . a+1$, where the (.) used is the usual multiplication which is commutative, so $a \star b=b \star a$. So \star is commutative.
-associative : $\forall a, b \in \mathbb{Q}$
$(a \star b) \star c=(a b+1) \star c=(a b+1) c+1=a b c+c+1$, while $a \star(b \star c)=a b c+a+1 \neq(a \star b) \star c$.
Now consider the following example: Let $a=1, b=1$, and $c=2$ then we get $(a \star b) \star c=2+2+1=5$, while $a \star(b \star c)=2+1+1=4$.
So \star is not associative.
Exercise. 9 -

- $\forall a, b \in \mathbb{Q}$
$a \star b=\frac{a . b}{2}=\frac{b . a}{2}=b \star a$. So \star commutative.
- $\forall a, b \in \mathbb{Q}$
$a \star(b \star c)=\frac{a \cdot \frac{b \cdot c}{2}}{2}=\frac{a b c}{4}=\frac{\frac{a \cdot b}{2} \cdot c}{2}=(a \star b) \star c$. So \star is associative.

Exercise. 23 -
$\mathrm{H}=\left\{\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]-a, b \in \mathbb{R}\right\}$
Let $\mathrm{A}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$, and $\mathrm{B}=\left[\begin{array}{cc}c & -d \\ d & c\end{array}\right]$ be two elements in H.
Then
-Under addition : $\mathrm{A}+\mathrm{B}=\left[\begin{array}{cc}a+c & -b-d \\ b+d & a+c\end{array}\right]$, which is an element of H . So His closed under addition.
-Under multiplication: A. $\mathrm{B}=\left[\begin{array}{cc}a c-b d & -a d-b c \\ b c+a d & a c-b d\end{array}\right]=\left[\begin{array}{cc}u & -v \\ v & u\end{array}\right]$ for $u=a c-b d$ and $v=a d+b c$.
So H is closed under multiplication.
Exercise. 26 -
Given \star associative: prove $(a \star b) \star(c \star d)=[(d \star c) \star a] \star b$.
start with : $[(d \star c) \star a] \star b$, and cosider $(d \star c)=u \in \mathrm{~S}$ (Note that $u=(c \star d)$ since \star commutative).
we get $(u \star a) \star b=u \star(a \star b)$ since \star is associative.
Then $u \star(a \star b)=(a \star b) \star u$ since \star is commutative.
Then we get $[(d \star c) \star a] \star b=(a \star b) \star u=(a \star b) \star(c \star d)$.

Section. 3

Exercise. 33 -
$\mathrm{H}=\left\{\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]-a, b \in \mathbb{R}\right\}$
a.

Consider the function $\phi:(\mathbb{C},+) \longrightarrow(\mathrm{H},+)$.
Defined by $\quad \phi(a+i b)=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$
$-\phi$ is well defined:

- for $a+i b=c+i d$ we have $a=c$ and $b=d$ which implies $\phi(a+i b)=\phi(c+i d)$.
- For any $z \in \mathbb{C}, \phi(z) \in \mathrm{H}$.
$-\phi$ is a homomorphism :
For $z_{1}=a+i b$, and $z_{2}=c+i d$ we need to show $\phi\left(z_{1}+z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$.

$$
\phi\left(z_{1}+z_{2}\right)=\phi(a+i b+c+i d)=\phi(a+c+i(b+d))=\left[\begin{array}{cc}
a+c & -b-d \\
b+d & a+c
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]+\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)
$$

$-\phi$ is injective :
Let $\phi\left(z_{1}\right)=\phi\left(z_{2}\right)$ for $z_{1}=a+i b$, and $z_{2}=c+i d$.
Then : $\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]=\left[\begin{array}{cc}c & -d \\ d & c\end{array}\right]$
Then $a=c$, and $b=d$, which implies $z_{1}=z_{2} . \Longrightarrow \phi$ is injective.
$-\phi$ is surjective :
Let $\mathrm{A}=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right] \in \mathrm{H}$, then consider $z=a+i b \in \mathbb{C}$, it is clear that $\phi(z)=\mathrm{A}$.
$\Longrightarrow \phi$ is surjective.

Note that instead of proving Φ inective and surjective we can just prove that ϕ has a well defined inverse function which is :
$\phi^{-1}\left(\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]\right)=a+i b$. So $(\mathbb{C},+) \cong(\mathrm{H},+)$
b.

Consider the same function ϕ introduced above, it is still a well defined bijection from (\mathbb{C}, \cdot) to (H, \cdot). So we only need to show that it is a homomorphism.
For $z_{1}=a+i b$, and $z_{2}=c+i d$ we need to show $\phi\left(z_{1}+z_{2}\right)=\phi\left(z_{1}\right)+\phi\left(z_{2}\right)$.

$$
\begin{aligned}
& \phi\left(z_{1} \cdot z_{2}\right)=\phi((a+i b) \cdot(c+i d))=\phi(a c-b d+i(a d+b c))=\left[\begin{array}{cc}
a c-b d & -(a d+b c) \\
a d+b c & a c-b d
\end{array}\right] \\
& =\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right] \cdot\left[\begin{array}{cc}
c & -d \\
d & c
\end{array}\right]=\phi\left(z_{1}\right) \cdot \phi\left(z_{2}\right)
\end{aligned}
$$

So ϕ ia an isomorphism. $\Longrightarrow(\mathbb{C},.) \cong(\mathrm{H},$.
Section. 4
Exercise. 8 -
The set $\{1,3,5,7\}$ with multiplication .8 modulo 8 is a group. Its table is

$\cdot 8$	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

